Fundamental Terms of Knowledge Representation

Knowledge: Collection of multimodal content, skills, experiences and problem solving methods, providing the background for complex information processing.

Knowledge Representation: Operational as well as formal and therefore computer understandable description of knowledge.

Knowledge Representation Language: Formal language for systematic representation of knowledge.

Representation Construction: Subset of a knowledge representation language

Knowledge Base: Knowledge that can be used by AI System.

Meta Knowledge: Knowledge about knowledge in the knowledge base.

Heterogeneous Knowledge: Knowledge base using different knowledge representation languages to encode code knowledge units.

Multiple Representation: Representation of the same knowledge using different knowledge representation languages in the same knowledge bases

Four Description Layers for Knowledge Representation Languages

1) Implementation Layer
 - objects
 - pointers

2) Logical Layer
 - predicates
 - quantifiers

3) Epistemological Layer
 - inheritance relations
 - structuring primitives

4) Ontological Layer
 - primitive concepts
 - primitive relations
Introduction to the Resource Description Framework

- **RDF (Resource Description Framework)**
 - from machine-readable to machine-understandable descriptions
- **RDF covers a wide spectrum of applications**
 - Semantic Web Foundation, Digital libraries, information extraction and integration, E-Commerce, ...
 - Significant industrial support and W3C standard
- **RDF consists of two parts:**
 - RDF Model (a set of triples)
 - RDF Syntax (various XML syntactic constructs for serialization)
- **RDF Schema** allows the definition of vocabularies (simple ontologies for RDF (and in RDF))

The Terminological Box (TBox) and the Assertional Box (ABox) in Knowledge Representation

- **TBox** (Terminological Box)
 - Father = (and Man Parent)
- **ABox** (Assertional Box)
 - Father(a) \(\forall x: \text{Man}(x) \rightarrow \ldots\)

The RDF Data Model

- **Resources**
 - A resource is an object, that one can refer to
 - Resources have URIs
 - RDF definitions are also resources
- **Properties**
 - Slots define relations to other resources or atomic values
- **Statements**
 - "Values are resources or atomic XML data"
- **Similar to frame-based representation in AI (e.g. FRL)"

The TBox and ABox in Description Logics

- **A TBox (Terminological Box)** is a set of schema axioms (sentences), defining the vocabulary to describe situations in a domain
- **An ABox (Assertional Box)** is a set of data axioms (ground facts), describing a specific state of a domain e.g.:
 - \{John:HappyParent, John hasChild Mary\}
- **A Knowledge Base (KB)** is just a TBox plus one or more ABoxes
Handling Collections in RDF

- Multiple occurrences of the same Property Types do not introduce a relationship between these values.
 - The Millers own a boat, a bike, and a TV set
 - The Millers need (a car or a truck)
 - (Sarah and Bob) bought a new car

- RDF defines three special Resources:
 - Bag unordered values rdf:Bag
 - Sequence ordered values rdf:Seq
 - Alternative single value rdf:Alt

- The core of RDF does not enforce a set-theoretic semantics for values

A Simple RDF Example

- Statement
 - "http://www.w3.org/Home/Lassila has the creator Ora Lassila"

- Structure
 - Resource (Subject) http://www.w3.org/Home/Lassila
 - Property (Predicate) http://www.schema.org/#Creator
 - Value (Object) "Ora Lassila"

- Directed Graph

A More Complex RDF Example

- In order to add another property to Creator, an intermediate resource is inserted.

RDF Example for Bags

The students of course 6.001 are Amy, Tim, John, Mary und Sue
RDF Example for Reification

• Ralph Swick believes that Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.

RDF Example for Alternative

• The source code for X11 can be found under ftp.x.org, ftp.cs.purdue.edu, or ftp.eu.net.

A Formal Model of RDF

• RDF has a very simple mathematical foundation:
 – Basic Definitions:
 • Resources
 • Properties ⊆ Resources
 • Literals
 • Statements = Properties × Resources × (Resources ∪ Literals)
 – Type System
 • rdf:type ∈ Properties
 • {rdf:type, sub, obj} ∈ Statements ⇒ obj ∈ Resources

Statements about Statements

In order to make statements about statements, they must be transformed into resources:

– subject the original referent resource
– predicate the original Property Type
– object the original value
– type rdf:Statement
A Formal Model of Reification in RDF

Reification

- \(\text{rdf:Statement} \in \text{Resource-Properties} \)
- \{ \text{rdf:pred}, \text{rdf:subject}, \text{rdf:object} \} \in \text{Properties} \)
- Reification of a triple \(\{ \text{pred}, \text{sub}, \text{obj} \} \) of statements is an element \(r \) of resources, which represent the reified triple and the elements \(s_1, s_2, s_3, \) and \(s_4 \) of statements, so that:
 - \(s_1: \{ \text{rdf:pred}, r, \text{pred} \} \)
 - \(s_2: \{ \text{rdf:subject}, r, \text{subj} \} \)
 - \(s_3: \{ \text{rdf:object}, r, \text{obj} \} \)
 - \(s_4: \{ \text{rdf:type}, r, [\text{rdf:Statement}] \} \)

Collections

- \{ \text{rdf:Seq}, \text{rdf:Bag}, and \text{rdf:Alt} \} \in \text{Resources-Properties} \)
- There is a subset of properties representing ordinal numbers (1, 2, 3, ...), which is called \(\text{Ord} \). Elements of \(\text{Ord} \) are referred to by: \(\text{rdf:}_1, \text{rdf:}_2, \text{rdf:}_3, .. \)

RDF Graph for RDF/XML Example

Unlike hypertext, RDF URIs can refer to any identifiable thing, including things that may not be directly retrievable on the Web (such as the person Eric Miller).

RDF Syntax

- The data model does not enforce a specific syntax
- There are various syntax variants based on XML
- General form:

\[
\text{rdf:RDF} \\
\text{<rdf:Description about="http://www.w3.org/Home/Lassila">} \\
\text{<s:Creator>Ora Lassila</s:Creator>} \\
\text{<s:createdWith rdf:resource="http://www.w3c.org/amaya"/>} \\
\text{</rdf:Description>} \\
\text{</rdf:RDF>}
\]

RDF/XML as an XML-based Syntax for RDF

RDF also provides an XML-based syntax (called RDF/XML)

\[
\text{<?xml version="1.0"?>} \\
\text{<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">} \\
\text{<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">} \\
\text{<contact:fullName>Eric Miller</contact:fullName>} \\
\text{<contact:mailbox rdf:resource="mailto:em@w3.org"/>} \\
\text{<contact:personalTitle>Dr.</contact:personalTitle>} \\
\text{</contact:Person>} \\
\text{</rdf:RDF>}
\]
The most important modeling primitives

- **Core classes**
 - **Root-Class** `rdfs:Resource`
 - **Meta-Class** `rdfs:Class`
 - **Literals** `rdfs:Literal`
- `rdfs:subclassOf` - property
- Taken over from `rdf:` properties (slots)
 - `rdfs:domain` & `rdfs:range`
 - `rdfs:label`, `rdfs:comment`, etc.
- Taken over from `rdf:` `InstanceOf` (`rdf:type`)

RDF schema (RDFS) and Extensibility

- RDF solely defines the data-model.
- There is a need for the definition of vocabularies for such a data-model.
- RDF schemata are web resources (and have URIs). They can be described with the aid of RDF. Define an ontology of a language with RDF schemata.
- Use the new vocabulary to describe instances of data
- Advantage: All languages use the same data model (simplifying interoperability)
The principle of ontology languages based on RDF

Legend

Definition uses RDF data model

Defined with

Extension of

RDF/schema: An example

Example: Defining RDF-schema using RDF-schema

• Namespace-URL: http://www.w3.org/2000/01/rdf-schema#

RDF/RDFS “Liberality”

• No distinction between classes and instances (individuals)

 <Species, type, Class>
 <Lion, type, Species>
 <Leo, type, Lion>

• No distinction between language constructors and ontology vocabulary, so constructors can be applied to themselves/each other

 <type, range, Class>
 <Property, type, Class>
 <type, subPropertyOf, subClassOf>
Problems with RDFS as an Ontology Language

- **RDFS too weak** to describe resources in sufficient detail
 - No **localised range and domain** constraints
 - Can't say that the range of hasChild is person when applied to persons and elephant when applied to elephants
 - No **existence/cardinality** constraints
 - Can't say that all instances of person have a mother that is also a person, or that persons have exactly 2 parents
 - No **transitive, inverse or symmetrical** properties
 - Can't say that isPartOf is a transitive property, that hasPart is the inverse of isPartOf or that touches is symmetrical
- **Difficult to provide reasoning support**
 - No “native” reasoners for RDF semantics
 - May be possible to reason via First Order Predicate Logic axiomatization – but does not scale