Exercise 1. (2 points)

You want to drive from Strasbourg to Munich. You are using the map below. The numbers in brackets (x, y) denote the coordinates of the different cities (ignore the numbers annotated at the roads between cities, these will be used in a later exercise). Use the greedy best-first tree search algorithm (i.e., no detection of repeated states), as given in the lecture, to find your route. As the heuristic function, use straight line distance, defined here by $dist(A, B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ where A and B are cities with coordinates (x_A, y_A) and (x_B, y_B) respectively. Write down the order in which the nodes are expanded. Draw the search tree, annotating each node with its h value.
Exercise 2.

(a) Formalize the search space for the alien tiles puzzle described at:

http://www.alientiles.com

Consider the goal described, on that web page, as “FirstGoal”.

Hint: Use the formalization of the missionaries and cannibals problem, as presented in the lecture, as a guideline.

(b) Specify the total runtime and memory requirement of a breadth-first search, for search depths 1–15, in the search space defined in part (a). Assume a memory requirement of 64 bytes and a search duration of 1 microsecond per node.

(c) Specify the total runtime and memory requirement of an iterative deepening search, for search depths 1–15, in the search space defined in part (a). Assume a memory requirement of 64 bytes and a search duration of 1 microsecond per node.

Exercise 3.

In many search spaces, one can reduce the runtime by avoiding symmetric sub-solutions.

(a) Every permutation of a move sequence in the alien tiles puzzle results in the same state. Why?

(b) Describe how one can modify a depth-limited depth-first search algorithm so that it considers only a single one of a move sequences many possible permutations.

(c) How does this optimization change the answer to Exercise 2 (c)?